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Abstract
In considering the irreversible chemical reaction A + B → C + B in
liquid solutions two many-particle approaches to the derivation of binary non-
Markovian kinetic equations are compared: simple superposition decoupling
and a method of extracting ‘pair’ channels from three-particle correlation
evolution. It is shown that both methods provide an almost identical description
of this reaction.

However, in studies of reversible reactions in liquid solutions only the
channel extraction method gives a correct physically clear description of
the reaction though it consists of a sequence of steps: the development of
integral encounter theory (IET), effective pairs approximation (EPA), modified
encounter theory (MET), and the final regular form (RF) of kinetic equations. It
is shown that the rate equations often encountered in the literature correspond
to the independence of transient channels of ‘scattering’ in the bimolecular
reversible reaction (A+B � C+B), while the independent transient channel of
‘decay’ in the reversible reaction A + B � C is defined solely by time integral
convolution. In the general case transient channels in non-Markovian theory
are not independent, and their interference manifests itself as a non-Markovian
inhomogeneous source in binary non-Markovian kinetic equations in regular
form.

Based on the derived equations new universal kinetics (independent of
models) of chemical equilibrium attainment have been obtained. It is shown
that these kinetics can differ essentially from the kinetics corresponding to the
kinetic law of mass action of formal chemical kinetics.

0953-8984/07/065136+29$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1
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1. Introduction

In formal chemical kinetics [1] the description of a bulk stoichiometric chemical reaction
involving reactants Ai :

∑

i

νi Ai = 0;
∑

i

αk Ak −
∑

l

βl Al = 0 (1.1)

(where νi are stoichiometric coefficients positive νk = αk for initial reactants and negative
νl = −βl for the reaction products) relies on two basic laws. The law of mass action, sometimes
called the thermodynamic detailed balancing principle,

∏
l[Al]βl

eq∏
k[Ak]αk

eq
= Keq (1.2)

defines the appropriate relation between equilibrium concentrations [Ai ]eq of initial reagents
and the products of reaction (1.1) via the rate constant Keq that depends solely on the
equilibrium thermodynamic parameters of the system. This law is based on general physical
laws of equilibrium thermodynamics; thus it is valid for any reaction system in equilibrium.

The kinetic law of mass action represents reaction (1.1) as

∑

k

αk Ak

k f

←−−−−−−−−→
kr

∑

l

βl Al. (1.3)

It defines the variation rate of concentrations [Ai ]t of any of Ai reagents at any instant of time,
and, hence, the reaction kinetics, according to kinetic equations

1

νi
∂t [Ai]t = −k f

∏

k

[Ak]αk
t + kr

∏

l

[Al]βl
t . (1.4)

Here ∂t denotes the derivative with respect to time, and k f and kr are concentration-independent
rate constants of forward and reverse reactions, respectively. In formal chemical kinetics the
values of these constants are either assumed to be prescribed, or treated as the fitting parameters
in the consideration of experimental kinetics.

Unlike the law of mass action (1.2), the kinetic law of mass action (1.4) does not follow
from general physical principles. That is why it needs substantiation. Also the recipes should be
given for the determination of rate constants k f and kr , the values of which depend essentially
on specific properties of a reacting system (the structure of reactants, their reactivity and
mobility).

The kinetic coefficients k f and kr should satisfy the kinetic detailed balancing principle

k f

kr
= Keq (1.5)

that is easily seen to be the consequence of laws (1.2) and (1.4). This principle relates the
ratio between the kinetic characteristics (rate constants of reactions in the kinetic law of mass
action (1.4)) to the equilibrium characteristic of the reacting system (equilibrium constant).

At rather low concentrations of reagents any stoichiometric reaction (1.1) is commonly a
sequence of elementary (in the general case, reversible) reactions (stages) of two types [2].

Bimolecular (exchange) reactions determined by binary encounters of reactants proceed
according to the scheme

A + B
k f

←−−−−−−−−→
kr

C + D. (1.6)
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A catalytic conversion of reactant A into reactant C is an important specific case of such an
elementary reaction:

A + B
k f

←−−−−−−−−→
kr

C + B. (1.7)

Associative–dissociative reactions where the forward reaction is a recombination (or addition)
one, and the reverse reaction is dissociation into two initial fragments proceed by a general
scheme

A + B
k f

←−−−−−−−−→
kr

C. (1.8)

A particular case of such a reaction is recombination of identical particles with the subsequent
dissociation

2A
k f

←−−−−−−−−→
kr

C. (1.9)

Here we confine the discussion to elementary reversible reactions (1.7) and (1.8). For them the
law of mass action (1.2) and the kinetic detailed balancing principle (1.5) are of the form

[C]eq

[A]eq
= Keq = k f

kr
(1.10)

and
[C]eq

[A]eq[B]eq
= Keq = k f

kr
(1.11)

respectively. In the framework of the kinetic law of mass action the kinetic equations are

∂t [A]t = −∂t [C]t = −k f [B] [A]t + kr [B][C]t (1.12)

and

∂t [A]t = ∂t [B]t = −∂t [C]t = −k f [A]t[B]t + kr [C]t (1.13)

respectively.
Substantiation of the kinetic law of mass action has been performed for the bimolecular

reaction (1.6) in rarefied gases [3]. The rate constants k f and kr are expressed in terms of
effective cross-sections of inelastic scattering from the channel AB into CD and back. It is
interesting that in this case the kinetic detailed balancing principle (1.5) follows either from
laws (1.2) and (1.4) or from time inversion symmetry [4].

If by a reaction is meant any physico-chemical process of quantum state variation, not
only the process accompanied by molecular structure rearrangement, then the deviation from
the kinetic law of mass action in rarefied gases has already been taken into account in pressure
broadening and dephasing theories [3]. Such deviations manifest themselves as the dependence
of the rate constant on time at initial times comparable to the collision time. They affect the
Lorentzian wings of the pressure broadened centre of spectral lines. In terms of chemical
kinetics this centre corresponds to the kinetic law of mass action. Theories based on this law
are called Markovian, while those taking account of the time dependence of the rate constant
are called non-Markovian. We shall use this terminology in considering chemical reaction
kinetics.

As for the reaction A+ B � C , the forward reaction in gases is only possible in conditions
of impact or radiation stabilization. Impact stabilization is caused by collisions with a foreign
gas, and radiation stabilization by the spontaneous deactivation of excited states. Compliance

3
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with the kinetic law of mass action calls for maintenance of thermal equilibrium in the process
of dissociation.

Though dilute solutions resemble a ‘gas’ of reactants residing in a chemically inert solvent,
reactions in them can proceed differently than in gases. With rare exception [5, 6], a solvent
is treated as a continual medium. On the one hand, the interaction with the medium simplifies
the quantum dynamics (including the rotational one) of an elementary event of chemical
conversion. In particular, it ensures stabilization in reaction (1.8) or reaction (1.9) and forms
the rate w(q) of the elementary event. The coordinate q of the configuration space involves the
relative-position vector �r , orientation angles of reactants, and internal degrees of freedom (for
example, vibration, spin, etc). In principle, the rate of the elementary event of reaction (1.6)
depends on four coordinates, and that of reaction (1.8) on three coordinates. It also allows for
the change in the coordinates of initial reactants under chemical conversion into products [7].
However, in most traditional theories variation of coordinates is neglected, and the rate w is
taken to depend solely on the configuration space coordinates of the initial reactants. In the
present contribution we shall primarily restrict ourselves to this approximation. Calculation of
the elementary rate is a separate problem of elementary event theories [8, 9]. In developing the
kinetic theory of reactions influenced by reactant mobility, the rates w(q) are considered to be
given. On the other hand, due to the ‘cage’ effect the medium complicates the kinematics
of collision (among other things, breaking time inversion symmetry) which in this case is
the encounter of reactants consisting of re-contacts [10]. This effect (arising in continual
consideration of the medium in the case of stochastic motion of reactants) is responsible for
long-term space correlations. It complicates the notion of pair encounters that can only be
identified in considering the evolution of the Gibbs many-particle ensemble of reactants. Thus
the derivation of kinetic equations of chemical reactions in solutions calls for the examination of
many-particle reacting systems, i.e., systems with all reactants placed in a continual chemically
inert medium.

2. A many-particle approach to the derivation of kinetic equations of chemical reactions
in liquid solutions in the framework of superposition decoupling

2.1. Superposition decoupling for the reaction A + B → C + B

The many-particle approach to the consideration of irreversible reactions A + B → product
in liquid solutions based on hierarchy closure for reduced distribution functions (RDFs) was
first applied by Waite [11, 12] to spatially uniform systems of spherical particles reacting at
the contact. Waite realized that, unlike the case with rarefied gases, the derivation of kinetic
equations for dilute solutions requires that not only pair distribution functions be considered.
In the most general statement taking into account the dependence of the rate wAB(q) of the
elementary event on the coordinate q , the lowest RDF hierarchies in a uniform system are as
follows:

∂t [A]t = −PAB (t) = −
∫

wAB(q) f AB(q, t) dq (2.1)

where fAB (q, t) is a two-particle RDF in the thermodynamic limit, and

∂t f AB(q, t) = (L̂AB (q) − wAB (q)) f AB (q, t) −
∫

wAB ′(q ′) f AB B ′(q, q ′, t) dq ′. (2.2)

Here q = B − A and q ′ = B ′ − A are relative coordinates (A, B and B ′ are the coordinates
of A, B and B ′ particles, respectively), and f AB B ′(A, B, B ′, t) ≡ f AB B ′(q, q ′, t) is a three-
particle RDF. The functional operator L̂AB defines the stochastic relative motion of reactants in
the medium (often it corresponds to continual diffusion).

4



J. Phys.: Condens. Matter 19 (2007) 065136 A B Doktorov and A A Kipriyanov

In the framework of simple superposition decoupling [12] (the analogue of the Kirkwood
superposition decoupling in the liquid theory [13]), it is assumed that

fAB B ′(q, q ′, t) = fAB (q, t) f AB ′(q ′, t)

[A]t
. (2.3)

This leads to the closure of the equation for the two-particle RDF

∂t f AB (q, t) = (L̂AB(q) − wAB(q)) f AB(q, t) − PAB (t)

[A]t
fAB (q, t) (2.4)

with the initial condition of correlation absence

fAB (q; 0) = [A]0[B]. (2.5)

This equation corresponds to the following physical picture of the bulk reaction course. Any
pair of relatively mobile reactants A + B enters into the reaction at the rate wAB(q), and the
other B reactants in solution play the role of some uncorrelated ‘background’. They bring about
the reaction of A particles proceeding at the rate PAB (t)/[A]t .

Introducing a new pair distribution function n AB(q, t),

fAB (q, t) = n AB(q, t)[A]t [B] (2.6)

brings kinetic equation (2.1) to a regular form similar to the kinetic law of mass action:

∂t [A]t = −K AB(t) [A]t [B]. (2.7)

As expected, here the reaction rate constant

K AB (t) =
∫

wAB(q) nAB(q, t) dq (2.8)

does not depend on the concentrations of reactants, but depends on time (the non-Markovian
rate ‘constant’). The pair distribution function n AB (q, t) satisfies the equation

∂t n AB(q, t) = (L̂AB(q) − wAB (q))n AB(q, t) n AB(q, 0) = 1. (2.9)

Unlike equation (2.4), it describes the evolution of an isolated pair A + B . Note that
equations (2.7), (2.8) and (2.9) are the exact solution of the many-particle problem for
the model of the reaction between immobile A reactant and mobile point (uncorrelated) B
reactants [14–16].

2.2. The model of spheres reacting at the contact

For the model of diffusing spheres reacting at the contact

wAB (r) = k0
f

δ(r − R)

4πr R
; L̂AB(r) = D

1

r 2

∂

∂r
r 2 ∂

∂r
(2.10)

where k0
f = 4π

∫ ∞
R−0 wAB(r)r 2 dr is the reaction constant (intrinsic constant), R = RA + RB

is the sum of van der Waals radii, and D = DA + DB is the relative diffusion coefficient. In
this case the solution of equation (2.9) can be found at wAB ≡ 0 under the radiation boundary
condition, making allowance for the course of the reaction at the contact of reactants [17].

For an absolutely absorbing (‘black’) sphere, k0
f → ∞, we obtain the Smoluchowski

result [18]

K AB (t) = 4π RD

(
1 + R√

π Dt

)
(2.11)

derived by a simple physical approach. As is generally taken, the time dependence of the
rate constant corresponds to the initial stage (transient) of the establishment of a quasi-
stationary profile of concentrations (non-stationary diffusion). On completion of the transient
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(t 	 τe = τD = R2/D) the non-Markovian rate constant (2.11) reaches its Markovian limit
(equal to diffusion constant)

k f = lim
t→∞ K AB (t) = kD = 4π R D (2.12)

that corresponds to the kinetic law of mass action.
For a partially absorbing (‘grey’) sphere we have [17]

K AB (t) = k0
f kD

k0
f + kD

{
1 + k0

f

kD
exp

[(
k0

f + kD

kD

)2 t

τD

]
erfc

(
k0

f + kD

kD

√
t

τD

)}
(2.13)

where erfc(x) is a complementary error function [19]. In the expression for the Markovian rate
constant

k f = lim
t→∞ K AB (t) = k0

f kD

k0
f + kD

(2.14)

two limiting reaction regimes can be distinguished: the kinetic regime at k0
f 
 kD when

k f ≈ k0
f , and the diffusion-controlled one, kD 
 k0

f when k f ≈ kD (see equation (2.12)).
Note (compare equations (2.11) and (2.13)) that at the transient the time dependence of the

non-Markovian rate constant depends noticeably on the model under consideration (structure
and reactivity of reactants).

2.3. Demerits of the superposition approximation

Simple superposition decoupling (2.3) is a specific case of superposition decoupling. It
corresponds to the absence of correlations between B reactants. General superposition
decoupling was also employed in studies of chemical reactions in liquid solutions [20, 21].
However, when applied to non-uniform irreversibly reacting systems, it gave results that
were inconsistent with physical considerations [22]. Application to reversibly reacting
systems [23] led to kinetic equations that were difficult to interpret. The reversible reaction
kinetics calculated by these equations for model systems failed to coincide with that obtained
by numerical simulation [24, 25]. This approximation was criticized in a number of
papers [22, 26, 27]. In the late 1980s considerable interest was aroused in many-particle
methods for the derivation of kinetic equations. Apart from the existing simple encounter
theory [28] and integral encounter theory (IET) [29] and reversible energy transfer kinetics
calculated on their basis [28, 30], other techniques were proposed, such as system-size
expansion [31], statistical non-equilibrium thermodynamic theory [32], kinetic theory of
reactions in liquids [6], modified encounter theory [33–35], etc. However, all these theories
were concerned with simple specific models of reactants and their mobility and were limited
to uniform reacting systems involving elementary reactions only. Consistent consideration
of force interactions between reactants and examination of multistage reactions also present
difficulties.

The method based on adapting the Balescu approaches of non-equilibrium statistical
mechanics [36] and non-stationary quantum scattering theory [4] to reacting systems placed
in an inert continual medium proved to be the most promising technique of treating many-
particle reacting systems. On this basis a new method for the derivation of binary non-
Markovian kinetic equations for a wide class of chemical reactions in liquid solutions has been
developed [22], and new universal kinetic laws of their course have been established [37–40].
The irreversible chemical reaction A + B → C + B and reversible chemical reactions
A + B � C + B and A + B � C serve as examples (see sections 3–6).

6
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3. A new many-particle method for the derivation of binary non-Markovian kinetic
equations of chemical reactions in liquid solutions

3.1. Correlation patterns

Adaptation of non-equilibrium statistical mechanics and quantum non-stationary scattering
theory methods is necessary, since in the reacting systems under study the motion of
reactants is of random walk character, unlike the case with gases where it is dynamic. In
particular, time inversion symmetry is broken. The adaptation has made it possible to derive
the kinetic equation of integro-differential form [41] typical of non-equilibrium statistical
mechanics [36, 42–44] for the irreversible reaction A + B → C + B . The kernel (memory
function) was represented as a sum which was summarized using the diagram technique. The
diagrams are to be kept in the binary approximation at small density parameters

ξi = 4
3π R3

eff[Ai ] (i = 1, 2) (3.1)

where [Ai ] is the i th reagent concentration (in our case [A1] = [A], [A2] = [B]). The
necessary diagrams were chosen by a scaling procedure corresponding to infinite dilution of
the solution with increasing timescale [41, 45].

Based on the analysis of the selected diagrams a universal many-particle method for
the derivation of binary non-Markovian kinetic equations for a wide class of reactions was
devised [22]. The method consists of six steps. The first step is the construction of hierarchies
for the RDF (see, e.g., equations (2.1) and (2.2)) in the thermodynamic limit. The second step
is passing to hierarchies for correlation patterns, e.g.,

fAB (q, t) = [A]t[B] + πAB(q, t) (3.2)

in view of correlation loss rules

πAB(q, t) −−−−−−−→
r=|�r |→∞

0. (3.3)

Neglecting correlation of B particles (πB B ≡ 0), we have for the three-particle RDF

f AB B ′(q, q ′, t) = [A]t [B]2 + πAB(q, t) [B] + πAB ′(q ′, t) [B] + πAB B ′(q, q ′, t). (3.4)

Originally reactants were treated as point particles (with a long-range reactivity), i.e., the force
interactions of reactants were ignored. This corresponds to making allowance for chemical
space correlations only. Force interaction were taken into account after derivation of binary
kinetic equations by incorporating them in the reacting pair evolution. However, simultaneous
accumulation of chemical and force space correlations on the level of the many-particle
problem statement can easily be taken into consideration. This can be done by representing
the motion operator L̂AB(q) as a sum of the motion operator of point particles and the operator
involving the force interaction. In operator formulation of the problem (see section 3.3) the
second operator can be considered on equal terms with the reaction interaction. For simplicity
in this contribution we shall restrict ourselves to the first approach, and the coordinate q will
denote space coordinates.

3.2. The integral encounter theory (IET)

The third step in the derivation of kinetic equations is the development of the integral encounter
theory (IET) making allowance for pair correlations only. Substitution of equations (3.2)
and (3.4) in equations (2.1) and (2.2) neglecting any three-particle correlations gives for the
reaction A + B → C + B

∂t [A]t = −
∫

wAB(q)([A]t[B] + πAB(q, t)) dq (3.5)

(∂t − L̂AB(q) + wAB(q))πAB(q, t) = −wAB(q)[A]t[B]. (3.6)

7
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The solution of equation (3.6) is easily found by taking the Laplace transform (denoted by the
upper index L) of time. We have (s is the Laplace variable)

(s − L̂AB(q) + wAB (q)) πL
AB(q, s) = −wAB(q)[A]L

s [B]. (3.7)

We introduce a spatial Green’s function

(s − L̂AB(q) + wAB (q)) gL
AB(q, q ′, s) = δ(q − q ′), (3.8)

where δ(q − q ′) is the Dirac delta function. In the timescale equation (3.8) takes the form

(∂t − L̂AB (q) + wAB (q))gAB(q, q ′, t) = 0 gAB(q, q ′, 0) = δ(q − q ′). (3.9)

It follows that gAB(q, q ′, t) is a conditional survival probability of an A particle at the point q
at the instant of time t provided that at the initial instant of time t = 0 it was at the point q ′.
Comparison of equations (3.9) and (2.9) shows

n AB (q, t) =
∫

gAB(q, q ′, t) dq ′. (3.10)

Using Green’s function gL
AB(q, q ′, s) in the solution of inhomogeneous equation (3.7) and

substituting this solution in equation (3.5) for the Laplace transforms, we have

s [A]L
s − [A]0 = −[B] 
L

e (s) [A]L
s , (3.11)

where the quantity


L
e (s) = −

∫ ∫
tL
AB(q, q ′, s) dq dq ′ (3.12)

is expressed in terms of the T -matrix

tL
AB (q, q ′, s) = −wAB(q) δ(q − q ′) + wAB(q) gL

AB(q, q ′, s) wAB(q ′), (3.13)

which is the analogue of the T -matrix of non-stationary scattering theory [4].

3.3. Operator representation

At the first glance, equation (3.11) written in the timescale is an integro-differential
convolution-type equation with the kernel (the memory function) defined by its Laplace
transform (3.12). However, the quantities introduced by equations (3.12) and (3.13) are not
the Laplace transform of a regular time function, since they do not satisfy the necessary
property of tending to zero at Re s → ∞ [19]. This property is inherent in mathematical
objects of non-stationary scattering theory. To avoid such difficulties and to obtain the relations
between physically measured quantities and the scattering theory objects (those in the timescale
included), one should introduce integral operators defined both by their kernels on an extended
time interval −∞ < t < ∞ and by space coordinates. Extension of the time interval of the
measured quantities defined at t � 0 to the entire time axis is performed by multiplication by
the Heaviside function θ(t). Thus the defined quantities are equal to zero at t < 0, and coincide
with initial quantities at t > 0. At t = 0 their values become indeterminate, and initial values
of physical quantities appear as a source in appropriate differential equations. Such functions
fall into a class of generalized functions [46].

We replace the functional operator L̂AB(q) and the elementary event rate wAB(q) by
integral operators L̂ and υ̂ f defined by the kernels

L(q, t|q ′, t ′) = L̂AB(q)δ(q − q ′) δ(t − t ′)
υ f (q, t|q ′, t ′) = −wAB(q) δ(q − q ′)δ(t − t ′).

(3.14)

8
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Instead of conditional probability gAB(q, q ′, t −t ′) (see equations (3.9)) we employ the integral
operator ĝ defined by the kernel

g(q, t|q ′, t ′) = θ(t − t ′)gAB(q, q ′, t − t ′). (3.15)

Using equations (3.9) and ∂tθ(t) = δ(t) for the operator ĝ gives the operator equation

(∂t − L̂ − υ̂ f )ĝ = Î , (3.16)

where Î is a unit operator with the kernel

I (q, t|q ′, t ′) = δ(t − t ′)δ(q − q ′). (3.17)

The operator ĝ is the analogue of the non-stationary scattering theory propagator [4, 37]. The
free propagator ĝ0 corresponds to υ̂ f ≡ 0 in equation (3.16) and

(∂t − L̂)ĝ0 = Î . (3.18)

Obviously there is a relation between the propagators [4, 33],

ĝ = ĝ0 + ĝ0υ̂ f ĝ = ĝ0 + ĝυ̂ f ĝ0. (3.19)

The expression for the T -operator is

t̂ f = υ̂ f + υ̂ f ĝ υ̂ f . (3.20)

Operator representations (3.19) and (3.20) easily give important relations

υ̂ f ĝ = t̂ f ĝ0; ĝ υ̂ f = ĝ0 t̂ f . (3.21)

They serve to obtain closed equations for the T -operator from equation (3.20),

t̂ f = υ̂ f + υ̂ f ĝ0 t̂ f = υ̂ f + t̂ f ĝ0 υ̂ f , (3.22)

as well as the propagator representation via free propagator and T -operator from
equation (3.19),

ĝ = ĝ0 + ĝ0 t̂ f ĝ0. (3.23)

According to equations (3.14) and (3.15), the T -operator kernel depends on the time difference

t f (q, t − t ′|q ′, 0) = −wAB(q) δ(q − q ′) δ(t − t ′)
+ wAB(q) θ(t − t ′)gAB(q, q ′, t − t ′) wAB(q ′). (3.24)

Taking the Laplace transform of equation (3.24) within a class of generalized functions of t − t ′
(generalized Laplace transformation [46]), we obtain equation (3.13). Note that the generalized
Laplace transform calls for no restrictions at Re s → ∞ [46]. Besides, the generalized Laplace
transformation of the derivative of the generalized function with respect to time corresponds
just to multiplication of its generalized Laplace transform by s [46].

The Laplace transform (3.13) of the kernel can be treated as the kernel of the integral T -
operator t̂L

f (s) defined in the coordinate space and depending parametrically on the Laplace

variable s. Similarly, one can consider operators L̂L, υ̂L
f and Î L (with the kernels independent

of s due to equations (3.14) and (3.17)) instead of operators L̂, υ̂ f and Î , and resolvent
operator ĝL(s) and free resolvent operator ĝL

0 (s) instead of propagators ĝ and ĝ0. According to
equations (3.16) and (3.18), these operators satisfy the equations

(s − L̂L − υ̂L
f )ĝL(s) = Î L; (s − L̂L)ĝL

0 (s) = Î L. (3.25)

For all these operators, relations of (3.19)–(3.23) type hold for any value of s. There are also
relations for operator values at two different values of s [37].
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Taking the Dirac designations of coordinate functions, we have for the memory func-
tion (3.12)


e(t − t ′) = −〈1|t f |1〉; 
L
e (s) = −〈1|tL

f (s)|1〉. (3.26)

Using the stationarity condition for the propagator ĝ0 [37], we easily find

∂t 〈1|kel (t̂ f ĝ0)|1〉 = 〈1|t f |1〉 (3.27)

where kel(· · ·) means the kernel of the operator between brackets. In view of equa-
tions (3.26), (3.21), (3.14), (3.15), (3.10), and (2.8), this gives the relation between the IET
kernel and the reaction rate constant (2.8) of the superposition decoupling considered on an
extended time axis

K f (t) = θ(t) K AB (t) (3.28)

i.e.,


e = ∂t K f (t);
∫ t

−0

e(τ ) dτ = K f (t). (3.29)

By virtue of equation (2.12) or equation (2.14) at t → ∞, the second relation gives the defini-
tion of the Markovian rate constant in terms of the IET kernel

k f =
∫ ∞

−0

e(τ ) dτ ≡ 
L

e (0). (3.30)

The IET kinetic equation (3.11) is now written within the extended time interval

∂t [A]t = δ(t) [A]0 − [B]
∫ t

−0

e(τ ) [A]t−τ dτ. (3.31)

Thus passing from equation (3.11) to equation (3.31) called for using a class of generalized
functions.

3.4. Effective pairs approximation (EPA) and modified encounter theory (MET)

The IET binary kinetic equation (3.31) takes account of pair correlations only and has a
restricted time range of applicability [33]. To extend this interval, it is necessary to retain
three-particle correlations, just as in equation (2.2). Substituting equations (3.2) and (3.4) in
equation (2.2) with allowance for equation (2.1) yields

(∂t − L̂AB (q) + wAB (q))πAB(q, t) = −wAB(q)[A]t[B]
−

∫
wAB ′(q ′) dq ′ [B]πAB(q, t) −

∫
wAB ′(q ′) dq ′ πAB B ′(q, q ′, t). (3.32)

However, instead of superposition decoupling of the form πAB B ′ , its evolution is considered
neglecting the influence of all four-particle correlations. In calculating the evolution of the
system of three reactants (A + B + B ′) the analogue of the Faddeev procedure from three-
body quantum theory is employed [47]. It consists in extracting pair channels such that in
each of the channels the reaction proceeds with only one of the B reactants, while the other
moves independently. The essence of the approximation is neglecting the interference of
channels [22]. Besides, an approximation of point encounters is used that consists in neglecting
the size of the reaction zone at macroscopic distances of the pair evolution [41, 45]. As a result,
equation (3.32) gives the so-called effective pairs approximation (EPA) that is the fourth step
in the development of the theory.

In operator form the desired equation is

(∂t − L̂ − υ̂ f )πAB(q, t) = υ̂ f [A]t [B] − k f [B] πAB(q, t), (3.33)

where k f is the Markovian rate constant defined by equation (3.30) in terms of the IET kernel.

10
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To make the essence of the approximation more clear, we turn to equation (2.4) of superposition
decoupling. In principle, the last term on the right-hand side describes the interaction of three
particles (in the pair A + B and with some B ′ particle of the ‘background’). Assuming that
in the reaction with B ′ the B reactant of the pair is rather far removed from A, owing to
equation (3.3) fAB (q, t) ≈ [A]t [B] in this term, and equation (2.4) is identically transformed
into equation (3.6) of the IET. Making allowance for accumulation of correlations in the pair
A+B (PAB (t)

[A]t
πAB(q, t) �= 0), it should be taken that interaction with the ‘background’ proceeds

in a quasi-stationary regime, and (see equations (2.1), (2.6), (2.8), and (2.12) or (2.14))

lim
t→∞

PAB(t)

[A]t
= k f [B]. (3.34)

Unfortunately, such an interpretation of channel extraction is valid solely for the irreversible
reaction A + B → C + B . In more complicated reactions, including reversible ones,
superposition decoupling is inapplicable. It does not reduce to EPA which becomes the only
basis for the derivation of binary non-Markovian kinetic equations.

In the case of the irreversible reaction A + B → C + B equation (3.33) describes the
evolution of one ‘effective’ pair. Thus the fifth step can easily be made in the development
of the theory: construction of a binary modified encounter theory (MET) that is completely
equivalent to EPA. Indeed, solving equation (3.33) in the same way as in the case with the IET,
we obtain the integro-differential equation of (3.31) type from equation (3.5) [22]:

∂t [A]t = δ(t)[A]0 − [B]
∫ t

−0

b(τ )[A]t−τ dτ, (3.35)

where the kernel (MET memory function) is


b(t) = 
e(t) exp(−k f [B]t); 
L
b (s) = 
L

e (s + k f [B]) (3.36)

i.e., it is a modification of the IET kernel with the use of the Markovian rate constant k f defined
by the IET kernel itself (see equation (3.30)) [35]. In view of equation (3.30) it is seen that the
Markovian rate constant is defined by the root s = −k f [B] of the expression [B]
L

b (s)+s [48].

3.5. Regular form (RF) of binary non-Markovian kinetic equations

The MET kinetic equation (3.35) has a form typical of equations of non-equilibrium statistical
mechanics [36, 42–44] and general kinetic theory of reactions in liquids [5]. However, from
the standpoint of chemical kinetics and binary equations in general, it has a demerit, namely,
the dependence of the kinetic coefficient (memory function (3.36)) on the initial concentration.
However, this equation can be brought to a regular form of rate equation (2.7) using the rule of
time shift,

[A]t−τ = exp

(
[B]

∫ t

t−τ

K AB(τ ) dτ

)
[A]t ≈ exp(k f [B]τ ) [A]t. (3.37)

This is a final sixth step in the construction of the binary theory. In the binary approximation in
equation (3.37) the kinetics of the concentration rise in the interval [t − τ, t] is replaced by the
Markovian one. Using equation (3.37) in equation (3.35) with allowance for equations (3.36)
and (3.29), we have the kinetic equation

∂t [A]t = δ(t)[A]0 − K f (t)[B][A]t. (3.38)

It coincides with equation (2.7) on an ordinary time interval in view of equation (3.28).
Reducing equation (3.35) to equation (3.37) is possible within the binary interval [33]

t 
 {k f [B]ξ}−1 (3.39)
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where ξ is the largest of the density parameters (3.1). A limited character of the binary interval
follows at least from the fact that at rather long times the so-called fluctuation asymptote is
realized [49–51] which cannot be achieved in the framework of the binary approximation.

Though for the irreversible reaction A + B → C + B reproduction of the kinetic
equation (2.7) of the superposition approximation calls for a sequence of steps, its evident
advantage is the ability to cover a wide class of chemical reactions. Another advantage is the
expression of the reaction rate constant K f (t) in terms of a T -matrix. This allows one to deduce
a new universal law of K (t) behaviour and attainment of equilibrium.

Indeed, the binary theory describes the behaviour of dilute systems where the characteristic
time of the kinetics significantly exceeds the average encounter time. So a timescale
can be chosen where the encounter duration can be neglected (τe → 0). In gases this
corresponds to an impact collision theory (Markovian) that completely ignores the non-
Markovian kinetics [3, 52]. However, in liquid solutions one should be more careful [39]. This
is because the statistical distribution of encounter times in solutions differs considerably from
that of collision times in gases [53]. In any case the approximation is based on the idea that
the effective size of reacting particles is negligibly small as compared to the average distance
between them (point encounter approximation). However, since the frequency of encounters
is proportional to the effective size of reactants, mathematical formulation of the idea can rely
solely on the scaling procedure which can be applied to the T -matrix only and gives [39]

t f (q, t|q ′, 0) = −k f

(
δ(t) + k f

4(π D̄)3/2
∂t

θ(t)√
t

)
δ(q)δ(q ′). (3.40)

Using equation (3.40) in equations (3.26) and (3.29) we have

K f (t) = θ(t) k f

(
1 + k f

4π D̄
√

π D̄t

)
, (3.41)

where D̄ is a relative macro-diffusion coefficient. Employing formal identification

k f = 4π D̄ Reff (3.42)

where Reff is the radius of some effective sphere we obtain the expression formally coinciding
(t > 0) with the Smoluchowski result (2.11) (with D = D̄ and R = Reff). However, our
result differs essentially from the Smoluchowski one where the second term is traditionally
identified with the transient. Any complication of the model (see, e.g., equation (2.13)) affects
this term, as must be the case for the transient. In point encounter approximation the transient
is neglected; thus the non-Markovian correction is universal, i.e., independent of the specific
structure of the reactants and the nature of their microscopic mobility. It depends only on
macro-observables k f and D̄. That is why formal ‘microscopic’ identification (3.42) is rather
artificial and has a meaning only for formal representation of the effective sphere [54]. So any
non-Markovian correction describing the transient in the end is transformed into a universal
non-Markovian correction preserved on macro-times and going through the whole kinetics. In
view of equation (3.41), the reaction kinetics is

[A]t = [A]0 exp

(
−2[B] k2

f

4(π D̄)3/2

√
t

)
exp(−k f [B]t) (3.43)

i.e., it is defined by two exponential factors. The second factor corresponds to pure exponential
kinetics of the law of mass action, while the first one can be considered as a pre-exponential
factor corresponding to the non-Markovian correction to the kinetics. Strictly speaking, pure
exponential kinetics never takes place even as a long-term asymptote. This means that the non-
Markovian correction permeates the kinetics and is the more important, the longer the time
t . Realizing this fact allows us to understand why appropriate fitting of the non-stationary
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(non-Markovian), not quasi-stationary (Markovian), kinetics is needed for the interpretation of
experimental data on fluorescence quenching by diffusion assisted electron transfer [55] even
at very low concentration of quenchers, when the transient of the kinetics is extremely short.

Nevertheless, after the transient stage the kinetic law of mass action is valid within a
bounded time interval with a rather high accuracy [40]. To see this, we introduce the reduced
macroscopic time

τ = k f [B]t . (3.44)

Then we have from equation (3.43)

[A]τ = [A]0 exp

(
−2

√
3ξτ

π

)
exp(−τ ) (3.45)

where ξ = 4
3π R3

eff[B] is one of the density parameters (3.1). Since the parameter is assumed
to be rather small, the kinetic law of mass action is a good approximation if

τ 
 1√
ξ

or t 

(

k f [B]√ξ
)−1

. (3.46)

The non-Markovian correction to the kinetics is fairly small, though it increases on the approach
to boundary (3.39) of the binary interval.

4. Unimolecular–bimolecular reversible reaction A + B � C

This reaction is of interest both from the standpoint of the development of modern binary
non-Markovian theory of elementary reactions in solutions, and from the point of view of
experiments in physical chemistry and biology. The well-known examples of such reactions
are reversible recombination of impurities in crystals [56], monomer–eximer kinetics in
solutions [57–60], reversible mechanisms in enzyme catalysis [61], and excited-state proton
transfer [62].

4.1. IET kinetic equations

As in section 3, we shall deal with uniform reacting systems. The sequence of the
above-mentioned steps enables one (at the third step) to derive IET equations that are the
generalization to the case of the presence of association (forward irreversible reaction) and
dissociation of isolated C molecules into two fragments [63],

∂t [A]t − δ(t)[A]0 = ∂t [B]t − δ(t)[B]0 = −∂t [C]t + δ(t)[C]0

= −
∫ t

−0

e

f (τ )[A]t−τ [B]t−τ dτ +
∫ t

−0

e

r (τ ) [C]t−τ dτ. (4.1)

Here 
e
f (τ ) is the association memory function coinciding with that considered in section 3

(see equations (3.26) and (3.20)) and satisfying relations (3.29) and (3.30). The dissociation
memory function is defined similarly to equation (3.26)


r (t − t ′) = −〈1|td |1〉 (4.2)

in terms of the dissociation T -operator [63, 64]

t̂d = υ̂d + υ̂ f ĝυ̂d, (4.3)

where ĝ is the forward reaction propagator defined by equation (3.16). The dissociation
operator υ̂d is defined by analogy with the operator υ̂ f in terms of the kernel

υd(q, t|q ′, t ′) = −wC(q)δ(q − q ′)δ(t − t ′). (4.4)
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Here wC(q) is the rate of dissociation into two fragments, the relative position of which is
characterized by the coordinate q . Equations (3.19) and (4.3) give the relation similar to the
second equation (3.21),

ĝυ̂d = ĝ0 t̂d . (4.5)

From equation (4.3) we have a closed equation for the operator t̂d ,

t̂d = υ̂d + υ̂ f ĝ0t̂d . (4.6)

The equation conjugate to (4.6), the analogue of the second equation (3.22), follows from the
first relation (3.21) and equation (4.3),

t̂d = υ̂d + t̂ f ĝ0υ̂d , (4.7)

and specifies just the relation between dissociation and association T -operators. In connection
with this, the physical meaning of the association T -operator differs essentially from that of
the dissociation T -operator. According to equation (3.23), the association T -operator is based
on the concepts of the scattering theory (encounter of reactants A and B in solution) [64].
The dissociation T -operator describes the evolution of the reaction pair arisen not from the
encounter but from reactant C dissociation at the instant of time t ′ and survived by the moment
t . The survival probability t−t ′ (considered as the kernel of the operator ̂t−t ′ in the time
space) of such a geminate pair satisfies the operator relation [64]

∂t ̂t−t ′ = 〈1| Î + υ̂ f ĝ|ϕ(q)〉 = 〈1| Î + t̂ f ĝ0|ϕ(q)〉, (4.8)

where

ϕ(q) = wC(q)

k0
r

k0
r =

∫
wC(q) dq (4.9)

is the A + B pair distribution normalized to unity at the instant of time t ′ of reactant C decay.
With equations (4.9) and (4.4) in equation (4.8) in view of equations (4.3) or (4.7), we obtain

∂tt−t ′ = −〈1|td |1〉/k0
r . (4.10)

Taking account of equation (4.2), one has


r (t) = k0
r ∂tt (4.11)

i.e., dissociation is represented as an independent decay of reactant C into the pair A + B
at the rate k0

r with the subsequent recombination at the rate ∂tt . We define the Markovian
dissociation rate constant similarly to equation (3.30):

kr =
∫ ∞

−0

r (τ ) dτ ≡ 
L

r (0) = k0
r ∞. (4.12)

Note that unlike the case with gases, dissociation in solutions is always connected with
association, however with a low association rate. This is because of the ‘cage’ effect. Due
to this effect complete dissociation consists of a sequence of elementary decays of reactant C
with the subsequent association of fragments until molecular motion causes reactants A and B
to escape from the ‘cage’ to the bulk [65].

The above relation is necessary for the kinetic detailed balancing principle to be valid.
Unlike gases, in this case it follows not from the kinetic law of mass action but from the
microscopic detailed balancing principle that is a consequence of time inversion symmetry
in elementary event theories [63, 64],

wAB (q)

k0
f

= wC(q)

k0
r

or
υ̂ f

k0
f

= υ̂d

k0
r

. (4.13)
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Equations (3.20), (4.3) and (4.13) give the operator relation (microscopic detailed balance)

t̂ f

k0
f

= t̂d
k0

r

. (4.14)

In view of definitions (3.26), (4.2), (3.30) and (4.12), this gives


 f (t)

k0
f

= 
r (t)

k0
r

or
k f

kr
= k0

f

k0
r

. (4.15)

Thus the ratio of memory functions (Markovian rate constants), each depending on A and B
mobility, is equal to the ratio of mobility independent intrinsic constants. Since the reaction
proceeding in the kinetic regime is described by the kinetic law of mass action, this relation is
equal to the equilibrium constant

Keq = [C]eq

[A]eq[B]eq
(4.16)

i.e., we have the kinetic detailed balancing principle [63, 64]


 f (t)


r (t)
= k f

kr
= k0

f

k0
r

≡ Keq. (4.17)

Note that despite the time interval boundedness, the IET ensures the attainment of correct
equilibrium concentrations by virtue of equation (4.1).

4.2. EPA, MET and regular form of binary non-Markovian kinetic equations

A knowledge of IET memory functions allows one to derive Markovian rate constants k f and
kr from equations (3.30) and (4.12) and develop the effective pairs approximation (EPA) at
the fourth step [66]. However, in contrast to the irreversible reaction A + B → C + B
considered in section 3 (see equation (3.33)), in the case of the reversible reaction A + B � C
the approximation describes interrelated evolutions of six ‘effective’ pairs [66]. Thus in the
general case memory functions of the corresponding kinetic equations cannot be expressed in
terms of IET memory functions, and such a theory is not binary, despite the smallness of density
parameters (3.1). So the fifth step of the derivation of binary non-Markovian kinetic equations is
needed, namely, construction of the modified encounter theory (MET). MET memory functions
are modified kernels of IET kinetic equations with the use of macro-observables specified by
the kernels themselves.

EPA to MET conversion depends essentially on the ratio between reactant mobility and
forward and reverse reaction rates. We consider the case where the rate of dissociation
significantly exceeds that of association [40, 64]:

kr/k f [B]t 	 1; kr/k f [A]t 	 1. (4.18)

It corresponds to the independence of the reaction pair dynamics and collective dynamics in
two-particle correlation evolution. The problem of the dynamics relationship will be studied in
greater detail in section 5 with the reversible reaction A + B � C + B as an example.

Passing to a regular form (RF) of binary kinetic equations requires that reactant C be a
rather stable chemical particle observed at ‘free path’ times [40, 64]

krτe 
 1 (4.19)

where τe is the mean encounter time of reactants A and B . This means that the kinetic law
of mass action is valid at least within the intermediate time interval after fairly short transient
stage. We shall call this situation a reaction regime [67].
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Taking into account that the density parameters in equation (3.1) may be represented as
ξi = k f τe[Ai ] and in view of equation (4.18), conditions (3.1), (4.18) and (4.19) can be written
in a unified fashion as

ξi 
 krτe 
 1 or ξi 
 Keq[Ai ]t 
 1. (4.20)

Binary non-Markovian kinetic equations have the following regular form:

∂t [A]t − δ(t)[A]0 = ∂t [B]t − δ(t)[B]0 = −∂t [C]t + δ(t)[C]0

= −K f (t)[A]t [B]t +
∫ t

−0

r (τ )[C]t−τ dτ. (4.21)

Under conditions (4.20) the reaction proceeds by independent association and dissociation
channels that may be presented by kinetic schemes [64, 68]

A + B � A . . . B ⇒ C; A + B ← A . . . B ⇐⇒ C (4.22)

respectively. Here thin arrows correspond to the exchange between ‘collision complex’ pairs
and free pairs in solution due to the relative motion of reactants. Thick arrows denote the
elementary chemical conversion of the ‘collision complex’ to the reactant, or, vice versa, the
elementary decay of this reactant into a pair of ‘collision complex’. The radical difference
between ‘scattering’ and decay channels is evident.

Note that the rate constants of the kinetic law of mass action calculated from these schemes
at diffusion motion of reactants (quasi-stationary ‘complex’ concentration)

k f = k0
f kD

k0
f + kD

; kr = k0
r kD

k0
f + kD

(4.23)

(kD is defined in equation (2.12)) coincide with Markovian rate constants calculated by
equations (3.30) and (4.12) for the model of hard spheres reversibly reacting at the contact.

Equations (4.21) are of ‘differential’ form for the association channel, i.e., the change in
concentration due to association is determined by the rate constant K f (t) (see equation (3.29)).
However, these equations are ‘integral’ for the dissociation channel, i.e., the change in
concentrations due to dissociation is determined by time convolution. Although the kernel of
this convolution coincides with the kernel for the decay of isolated reactant C [65], the derived
equations take into account the effect of a ‘competitive binding’ [69], i.e., competition between
bulk reactants for reactants of the pair arisen from reactant C decay. This effect appears to be
included in the association channel.

The kinetic principle of detailed balancing follows from equations (4.17) and (3.29) [64],

∂t K f (t)


r (t)
= k f

kr
= k0

f

k0
r

= Keq. (4.24)

Taking into consideration material balance conditions

[A]t − [B]t = [A]0 − [B]0; [A]t + [C]t = [A]0 + [C]0;
[B]t + [C]t = [B]0 + [C]0

(4.25)

following from equations (4.21) and (4.16), we find, in view of (4.20), equilibrium
concentrations up to the first non-vanishing terms

[A]eq ≈ [A]0 + [C]0; [B]eq ≈ [B]0 + [C]0

[C]eq ≈ Keq([A]0 + [C]0)([B]0 + [C]0))
(4.26)

that identically satisfy relation (4.16).
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Let us introduce the deviation from equilibrium concentrations

�[A]t = [A]t − θ(t) [A]eq; �[B]t = [B]t − θ(t) [B]eq;
�[C]t = [C]t − θ(t)[C]eq.

(4.27)

As is readily seen from equations (4.25) and the same equations at equilibrium (t → ∞), they
are related to one another in a simple fashion:

�[A]t = �[B]t = −�[C]t ≡ [�]t . (4.28)

Then using equations (4.27), (4.28) and (4.24), we obtain from equations (4.21) the only
equation for [�]t ,

∂t [�]t = δ(t)[�]0 − K f (t){[�]2
t + ([A]eq + [B]eq)[�]t} −

∫ t

0

r (t − τ )[�]τ dτ, (4.29)

describing the attainment of equilibrium concentrations by any of the reactants. Now we
establish a universal kinetic law of equilibrium attainment with the use of expression (3.41)
for K f (t) on a large timescale (point encounter approximation). To derive the kernel 
r (t), we
need only use the kinetic principle of detailed balancing (4.24):


r (t) = kr

k f
∂t K f (t) = kr

(
δ(t) + k f

4(π D̄)3/2
∂t

θ(t)√
t

)
. (4.30)

The solution of equation (4.29) can be found by the perturbation theory method considering
the non-Markovian correction terms (resulting from the second (non-Markovian) terms in
equations (3.41) and (4.30)) as a perturbation [40, 41].

Let us introduce the Markovian rate [40]

k = k f ([A]eq + [B]eq) + kr (4.31)

and a small (under condition (4.20)) dimensionless parameter [39, 40]

εr = k f
√

kr

4π D̄3/2

 1. (4.32)

Then in the first-order approximation in parameters Keq[�]0 and εr we have [40]

[�]t = [�]0{e−kt − Keq[�]0e−kt (1 − e−kt ) + Pr (t)}, (4.33)

where

Pr (t) = εr

√
kr

πk

{
2
√

kt(kt − 1) + (1 − 2kt)
∫ t

0
dy

√
y exp(y − kt)

}
(4.34)

that satisfies the condition∫ ∞

−0
Pr (t) dt = 0 (4.35)

and demonstrates the following short-term (kt 
 1) and long-term (kt 	 1) behaviour:

Pr (t) ∼
t→0

2εr

√
kr t

π
Pr (t) ∼

t→∞
εr√

4π(kt)3/2
. (4.36)

Thus we have that the kinetics is a sum of the Markovian and non-Markovian terms. Although
for irreversible association (section 3) the kinetics can be formally represented in the same
fashion, the results differ radically. In the first case the universal non-Markovian correction
describes the deviation from the kinetic law of mass action. In the second case the leading term
of expansion in equation (4.33) is changed for another: the Markovian terms disappear with
time and the non-Markovian term becomes the leading one. Thus the kinetics demonstrates a
universal power law ∼t−3/2 in contradiction to the kinetic law of mass action. Note that since
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the kinetics investigated is binary, this long-term kinetics is not a well-known fluctuation one,
though it has some features of the fluctuation kinetics that is commonly associated with the
manifestation of macroscopic many-particle correlations in reacting systems [49].

Thus the time range of the validity of the law of mass action becomes essentially narrower
than the binary interval (3.39). The correct description of the irreversible reaction A + B � C
over the entire binary range requires that the non-Markovian corrections be taken into account
even in the most rough approximation.

5. Reversible reaction A + B � C + B

Among reversible bimolecular reactions, the reaction A + B � C + B is the simplest one.
It makes it possible to reveal some regularities in the course of other bimolecular reversible
reactions; besides, it is interesting from the standpoint of catalytic chemistry.

5.1. IET kinetic equations

As before, we shall deal with uniform reacting systems. In this case the construction of the
IET may be based on the conception of ‘effective’ particles [70], i.e., instead of two A and
C species we can consider some R particle the ‘internal’ states of which correspond either to
A or to C reactant. Then the encounter of the R particle with reactant B ‘switches on’ the
reaction Liouvillian that affects the populations of ‘internal’ states. The process resembles the
course of irreversible reaction (section 3). The difference is that instead of one state population
(concentration [A]t), populations of two states are changed. Accordingly, a two-component
column-vector of concentrations may be introduced [70, 71]:

[R]t =
[ [A]t

[C]t

]
. (5.1)

For its variation we can write the matrix analogue of kinetic equation (3.31) [70, 71]:

∂t [R]t = δ(t)[R]0 − [B]
∫ t

−0
Σe(τ )[R]t−τ dτ. (5.2)

Here 
e(τ ) is a matrix (2 × 2) memory function expressed in terms of the kernel of the matrix
T -operator t similarly to equation (3.26):

Σe(t − t ′) = −〈1|t|1〉. (5.3)

As before, angle brackets denote integration over coordinates. Equation (3.20) assumes a
matrix form,

t̂ = υ̂ + υ̂ĝυ̂, (5.4)

just as equation (3.16) for the matrix propagator,

(∂t − L̂ − υ̂)ĝ = Î. (5.5)

Here Î is a unit matrix-integral operator defined by the matrix kernel

I(q, t|q ′, t ′) = δ(q − q ′)δ(t − t ′)E2, (5.6)

where E2 is a unit matrix (2 × 2). The matrix functional operator L̂ specifies the relative
motion in the pair R + B , i.e., in pairs A + B and C + B , while the matrix reaction operator
(the Liouvillian) defines the reactions in these pairs:

L̂ =
[ L̂AB 0

0 L̂CB

]
; υ̂ =

[
υ̂ f −υ̂r

−υ̂ f υ̂r

]
. (5.7)
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Here L̂AB , υ̂ f and L̂CB , υ̂r are operators for the pairs A + B and C + B , respectively (i.e.,
forward and reverse reactions), defined in accordance with equations (3.14). In view of the
structure of matrix operators (5.7) and equation (5.4), we easily establish the general structure
of operators ĝ and t̂

ĝ =
[

ĝAA ĝAC

ĝC A ĝCC

]
; t̂ =

[
t̂ f −t̂r

−t̂ f t̂r

]
, (5.8)

where

t̂ f = υ̂ f + {υ̂ f (ĝAA − ĝAC) + υ̂r (ĝCC − ĝC A)}υ̂ f

t̂r = υ̂r + {υ̂ f (ĝAA − ĝAC) + υ̂r (ĝCC − ĝC A)}υ̂r
(5.9)

are T -operators of forward and reverse reactions, respectively. Note that the structure of the
T -operator of the forward reaction differs considerably from that (see equation (3.20)) for the
irreversible reaction and forward reaction in the reaction A + B � C . Both T -operators are
similar in structure, since they describe similar scattering processes (reactions). It is essential
that each of the T -operators involves both reaction operators υ̂ f and υ̂r .

According to equation (5.3), the matrix memory function has the same matrix structure as
t̂ (5.8), and


e
f (t − t ′) = −〈1|t f |1〉; 
e

r (t − t ′) = −〈1|tr |1〉. (5.10)

Equation (5.2) gives the non-Markovian kinetic equations of the IET:

∂t [A]t − δ(t)[A]0 = −∂t [C]t + δ(t)[C]0

= −[B]
∫ t

−0

e

f (τ )[A]t−τ dτ + [B]
∫ t

−0

e

r (τ )[C]t−τ dτ. (5.11)

The Markovian rate constants are defined in an ordinary way (see equation (3.30)):

k f =
∫ ∞

−0

e

f (τ ) dτ ; kr =
∫ ∞

−0

e

r (τ ) dτ. (5.12)

We use the microscopic detailed balancing principle for elementary event rates [72],

wAB (q)

k0
f

= wCB (q)

k0
r

or
υ̂ f

k0
f

= υ̂r

k0
r

, (5.13)

where k0
f and k0

r are intrinsic constants of the forward and reverse reactions, respectively,
defined in terms of wAB (q) and wCB (q) (by analogy with the second equation (4.9)). Then
equations (5.9) yield the microscopic detailed balancing principle for T -operators:

t̂ f

k0
f

= t̂r
k0

r

. (5.14)

In view of equations (5.10), (5.12) and arguments used in the derivation of equation (4.17), we
obtain the kinetic principle of detailed balancing [72]:


e
f (t)


e
r (t)

= k f

kr
= k0

f

k0
r

= Keq ≡ [C]eq

[A]eq
. (5.15)

5.2. EPA kinetic equations

Following the logic of the previous subsection, we write for the reaction A + B � C + B
(instead of equation (3.33) for irreversible reactions) [70]

(∂t − L̂ − υ̂ + k[B])π = υ̂[R]t[B]. (5.16)
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Here π is a column-vector of correlation patterns, and k is the matrix composed of Markovian
rate constants (5.12) and defining the kinetics corresponding to the kinetic law of mass action

∂t [R]t = −k[B][R]t (5.17)

i.e.,

π(q, t) =
[

πAB(q, t)
πCB (q, t)

]
; k =

[
k f −kr

−k f kr

]
. (5.18)

We seek the solution of the inhomogeneous equation (5.16) using the matrix propagator of
effective pairs satisfying the equation

(∂t − L̂ − υ̂ + k[B])Ĝ = Î. (5.19)

Then the EPA kernel will be expressed via the effective pair T -operator

M̂ = υ̂ + υ̂Ĝυ̂ (5.20)

defined similarly to the T -operator t (5.4) but with the effective pair propagator Ĝ instead of ĝ.
Thus the EPA equations will have the form of equation (5.11) but with EPA kernels instead

of IET ones.


 f (t − t ′) = −〈1|M f |1〉; 
r (t − t ′) = −〈1|Mr |1〉. (5.21)

As the structure of M̂ f and M̂r is identical to equations (5.9), the kinetic principle of detailed
balancing is valid for EPA kernels. It differs from equation (5.15) only in the substitution of
EPA kernels for IET ones.

5.3. Specific case L̂AB = L̂CB = L̂
In this case, in view of equations (5.13) and (5.15), the matrix k in equation (5.19) commutes
with all other operators. Thus the kernel of the matrix propagator of effective pairs is obtained
from the matrix propagator kernel by multiplication by exp(−k[B](t − t ′)). Then the same
relation exists between the kernel of the matrix operator of effective pairs and the kernel of the
matrix T -operator, and

Σ(τ ) = Σe(τ ) exp(−k[B]τ ). (5.22)

EPA equation

∂t [R]t = δ(t)[R]0 − [B]
∫ t

−0
Σ(r) [R]t−τ dτ (5.23)

is a binary equation of MET, since kernel (5.22) is defined by the IET kernel and its
characteristic k.

Using the rule of time shift similar to equation (3.37) (see equation (5.17)),

[R]t−τ ≈ exp(k[B]τ )[R]t, (5.24)

we have a regular form of binary non-Markovian kinetic equations

∂t [R]t = δ(t)[R]0 − [B]
∫ t

−0
Σe(τ ) dτ [R]t (5.25)

or, in expanded form,

∂t [A]t − δ(t)[A]0 = −∂t [C]t + δ(t)[C]0 = −K f (t)[B][A]t + Kr (t)[B][C]t, (5.26)

where the time-dependent rate constants are

K f (t) =
∫ t

−0

e

f (τ ) dτ ; Kr (t) =
∫ t

−0

e

r (τ ) dτ. (5.27)
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These constants satisfy the kinetic principle of detailed balancing (5.15). It follows from
equation (5.12) that their limits at t → ∞ are the Markovian rate constants introduced earlier.
Thus binary non-Markovian equations written in a regular form (5.26) are the rate equations of
the Smoluchowski–Waite equations type [11, 18] in both directions of the reaction. This case
(just as that considered in section 4 (the reaction A+B � C)) corresponds to the independence
of channels that can be represented as simple kinetic schemes [30]

A + B � A . . . B ⇐⇒ C . . . B → C + B

A + B ← A . . . B ⇐⇒ C . . . B � C + B
(5.28)

with the same arrow designations as in scheme (4.22) for the reaction A + B � C . It is seen
that both ‘scattering’ channels are symmetric about the reaction directions. However, they differ
radically from the ‘scattering’ channel in the reaction A+B � C . Each channel (5.28) involves
elementary chemical conversion in both directions that corresponds to reversible conversion in
a ‘collision complex’. So the rate constant K f (t) in equation (5.26) does not coincide with the
rate constant (3.28) appearing in equation (3.38) of the irreversible reaction and equation (4.21)
of the reversible reaction A + B � C .

Note that as in the reaction A+ B � C , the rate constants of the kinetic law of mass action
calculated by scheme (5.28)

k f = k0
f

1 + k0
f

kDAB
+ k0

r
kDC B

kr = k0
r

1 + k0
f

kDAB
+ k0

r
kDC B

(5.29)

(kDAB and kDC B are defined similarly to equation (2.12) using the corresponding diffusion
coefficients) at kDAB = kDC B ≡ kD coincide with the Markovian values of rate constants (5.27)
of the kinetic equation (5.26) calculated for the model of hard spheres reversibly reacting at the
contact.

With the use of material balance conditions following from equation (5.26)

[A]t + [C]t = [A]eq + [C]eq = [A]0 + [C]0 (5.30)

and equation (5.15), we find the equilibrium concentrations

[A]eq = 1

1 + Keq
([A]0 + [C]0); [C]eq = Keq

1 + Keq
([A]0 + [C]0). (5.31)

We introduce deviations from equilibrium concentrations

�[A]t = [A]t − θ(t)[A]eq; �[C]t = [C]t − θ(t) [C]eq. (5.32)

It follows from equation (5.30) that

�[A]t = −�[C]t ≡ [�]t . (5.33)

Using the kinetic principle of detailed balancing (see equations (5.15)), with K f (t) and Kr (t)
instead of 
e

f (t) and 
r (t), we obtain the kinetic equation from equations (5.26),

∂t [�]t = δ(t)[�]0 − (K f (t) + Kr (t))[B][�]t, (5.34)

that formally coincides with equation (3.38) of the irreversible reaction.
To derive a universal asymptotic kinetic law of equilibrium attainment, we need only note

that in the point encounter approximation (see section 5.4)

t f (q, t|q ′, 0) + tr (q, t|q ′, 0) = −(k f + kr )

{
δ(t) + k f + kr

4(π D̄)3/2
∂t

θ(t)√
t

}
δ(q)δ(q ′). (5.35)

This gives (see equations (5.10) and (5.27))

K f (t) + Kr (t) = θ(t)(k f + kr )

{
1 + k f + kr

4π D̄
√

π D̄t

}
. (5.36)
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Thus comparison of equation (3.38) where the rate constant K f (t) is given by expression (3.41)
with equation (5.34) where the sum of rate constants K f (t) + Kr (t) is given by
expression (5.36) shows that studies of the equilibrium attainment kinetics in the reversible
reaction A + B � C + B are equivalent to examination of the kinetics of the irreversible
reaction A + B → C + B (see equations (3.43) and (3.45)), where the Markovian rate constant
k f of the reaction A + B → C + B is replaced by the sum k f + kr of Markovian rate constants
in the forward and reverse directions of the reversible reaction A + B � C + B . This is in
full agreement with the theorem of the correspondence between the above kinetics proved in
the literature [73].

5.4. Independence and separation of pair dynamics and collective dynamics. MET binary
non-Markovian equations

In the specific case of identical mobility in the pairs A + B and C + B (see the preceding
subsection) the EPA kernel was at the same time an MET kernel. It was divided into the product
of an IET kernel describing the pair dynamics on micro- and meso-timescales and a co-factor
defining the collective dynamics (on meso- and macro-scales). Such representations correspond
to the independence of these dynamics which in a regular form of the equation manifests itself
as the independence of forward and reverse reaction ‘channels’. In the general case of different
mobility such a separation of dynamics does not take place. As a result, an ‘interference’ of
channels occurs which is determined by collective dynamics developing on mean timescales
between reactant encounters but corresponding to non-Markovian kinetics. Thus the EPA can
be reduced to MET by representing the EPA kernel as a sum of expression (5.22) and the
additional term that can be considered on the macro-timescale. This is most reliably achieved
by scaling [41, 45] of this term.

To obtain such a representation, we use a matrix analogue of equation (3.22) both for the
T -operator M̂ of effective pairs and the T -operator t of the pair

M̂ = υ̂ + υ̂Ĝ0M̂ ; t̂ = υ̂ + t̂ĝ0υ̂, (5.37)

where Ĝ0 and ĝ0 are free propagators of effective pairs and the reaction pair obeying
equation (5.19) and (5.5) at υ̂ ≡ 0, respectively. Eliminating the operator υ̂ from
equations (5.37), we have

M̂ = t̂ + t̂(Ĝ0 − ĝ0)M̂ . (5.38)

Writing equation (5.38) for operator kernels necessary for the calculation of memory functions,
we obtain

M(q, t|q ′, 0) = t(q, t|q ′, 0) + t̂(Ĝ0 − ĝ0)M(q, t|q ′, 0) (5.39)

or, identically,

M(q, t|q ′, 0) = t(q, t|q ′, 0) exp(−k[B]t) + t(q, t|q ′, 0)(E2 − exp(−k[B]t))
+ t̂(Ĝ0 − ĝ0)M(q, t|q ′, 0). (5.40)

Equation (5.40) corresponds to the desired representation of the EPA kernel. It is easily
seen that the second (‘interference’) term is actually different from zero on macro-timescales.
To estimate the third term, we need scaling [41, 45] which shows that the required values of the
quantity Ĝ0 − ĝ0 contain the non-Markovian part only. The motion of reactants can be treated
as macro-diffusion on the scales considered (these propagators will be denoted by the upper
index D). Using the T -matrix in the point encounter approximation

t(q, t|q ′, 0) = −k

{
δ(t) + 1

4π3/2

(
k f

D̄3/2
AB

+ kr

D̄3/2
CB

)
∂t

θ(t)√
t

}
δ(q)δ(q ′) (5.41)
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which is the generalization of equation (3.40) we obtain for the MET memory function

Σb(t) = Σe(t) exp(−k[B]t) + Λm(t). (5.42)

Here

Λm(t) = 1

4π3/2

(
k f

D̄3/2
AB

+ kr

D̄3/2
CB

)
∂t

θ(t)√
t

k(E2 − exp(−k[B]t)) + Λ(t), (5.43)

where

Λ(t) = lim
q→0

k(gD(q, t|0, 0) − GD(q, t|0, 0))k. (5.44)

Note that in using (5.41) in the second term of equation (5.39) and in the third term of
equation (5.40) only the Markovian part should be taken into account. The Markovian part
of the operator M̂ obviously coincides with the Markovian part of t̂. The first expression
in equation (5.39) also points to another possibility of representing the MET kernel as a sum
corresponding to separation of the above dynamics,

Σb(t) = Σe(t) + Λ(t). (5.45)

This representation is more universal in studies of MET kernel transformation to the limiting
cases (see below). The components of the matrix Σb according to equations (5.42) and (5.45)
are


b
f (t) = 
e

f (t) exp(−(k f + kr )[B]t) + k f (k f + kr )�m(t) = 
e
f (t) + k f (k f + kr )�(t)

(5.46)


b
r (t) = 
e

r (t) exp(−(k f + kr )[B]t) + kr (k f + kr )�m(t) = 
e
r (t) + kr (k f + kr )�(t)

(5.47)

where �m(t) and �(t) are given in the appendix. As is seen, they do depend on macro-
observables defined by the IET memory function.

5.5. Regular form of binary non-Markovian kinetic equations

To go to a regular form, one should employ again the time shift rule (5.24). However, as
mentioned above, application of this rule requires that the time of rate constant attainment of
its Markovian limit be essentially less than the average time between the encounters defined
by the inverse value of the reaction rate (see equations (2.11) or (3.41)). Since, according to
equation (5.34), the equilibrium attainment rate is defined by the sum of rate constants, just this
quantity should be studied. According to equation (5.41) and the definition of rate constants, it
is

K f (t) + Kr (t) = −(k f + kr )

{
1 + 1

4π3/2

(
k f

D̄3/2
AB

+ kr

D̄3/2
CB

)

t

1√
t

}
. (5.48)

The required condition is as follows:

[B] (k f + kr )

16π3

(
k f

D̄3/2
AB

+ kr

D̄3/2
CB

)2


 1. (5.49)

It is readily seen that for diffusion coefficients of the same order it is equivalent to the smallness
of the density parameter (3.1) where the effective radius is equal to the sum of radii in the
forward and reverse reaction channels, and concentration [Ai ] = [B]. However, the situation
is changed if

(D̄CB/D̄AB )
3
2 	 kr/k f . (5.50)
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Equation (5.49) immediately gives

ξAB (1 + kr/k f ) 
 1 (5.51)

where the density parameter ξAB is defined by the effective radius in the forward channel.
For the irreversible reaction (kr = 0), criterion (5.51) coincides with (3.1). However, at
k f 	 kr it imposes more rigid restrictions on the density parameter for the forward channel. It
is interesting that in this case it can easily be recast as

kr [B] (R AB
eff )2

3D
≡ kr [B]τ AB

e 
 1. (5.52)

This condition means that the depth of the fast reverse reaction should be small during the time
of quasi-stationary profile attainment in the slow forward reaction channel. It is quite similar
to criterion (4.19) of the reaction regime in the reaction A + B � C . The reason will become
clear in section 6.

Let us apply the time shift rule to the MET integro-differential equation with kernel (5.42).
For the non-Markovian term �m(t) we can restrict ourselves to the Markovian part of the
kinetics. This gives a binary non-Markovian equation in a regular form,

∂t [R]t − δ(t)[R]0 = −K(t)[B][R]t − J (t)k[B][R]0, (5.53)

where K(t) is defined in an ordinary fashion in terms of the IET matrix kernel, and

J (t) = −(k f + kr )

∫ t

−0
�m(t − τ ) exp(−(k f + kr )[B]τ ) dτ. (5.54)

For concentrations [A]t and [C]t , equation (5.53) is

∂t [A]t − δ(t)[A]0 = −∂t [C]t + δ(t)[C]0

= −K f (t)[B][A]t + Kr (t)[B][C]t + J (t)[B](k f [A]0 − kr [C]0) (5.55)

and for deviations [�]t (5.33) from equilibrium concentrations,

∂t [�]t − δ(t)[�]0 = −(K f (t) + Kr (t))[B][�]t + J (t)(k f + kr )[B][�]0. (5.56)

An important difference between the derived equations and conventional rate equations is that
they involve an inhomogeneous non-Markovian term related to channel interference. This term
will be discussed in detail in section 6.

Now we establish a universal kinetic law of equilibrium attainment in view of
equations (5.48) and (5.54) and considering non-Markovian corrections as a perturbation. This
gives the expression

[�]t = [�]0(exp(−(k f + kr)[B]t) + P(t)) (5.57)

similar in structure to equation (4.33), where

P(t) = −(k f + kr )[B]
∫ t

−0
dt1

∫ t1

−0
dt0 exp(−[B](k f + kr )(t − t0))

×
[
(k f + kr )�(t) + ∂t(θ(t)t−1/2)

4π3/2

(
k f

D̄3/2
AB

+ kr

D̄3/2
CB

)]
. (5.58)

The function P(t) shows the following short-term behaviour:

P(t) ∼
t→0

−2ε
√

τ/π, (5.59)

where

τ = [B](k f + kr )t ε =
√[B](k f + kr )

4π

(
k f

D̄3/2
AB

+ kr

D̄3/2
CB

)
. (5.60)
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Figure 1. Relative deviation η of kinetics (5.57) from the Markovian kinetics for the following
parameters: for curve A ε = 0.2, DAB/DC B = 24; for curve B ε = 0.05, DAB/DC B = 3/2. For
both curves k f /kr = 2.

The long-term behaviour is

P(t) ∼
t→∞

15

8
√

π
ε

k f kr

(k f + kr )
(

k f

D̄
3/2
AB

+ kr

D̄3/2
C B

) (D̄AB − D̄CB )2

(D1τ )7/2
, (5.61)

where

D1 = kr

k f + kr
D̄AB + k f

k f + kr
D̄CB . (5.62)

Thus, just as kinetics (4.33), kinetics (5.57) is a sum of the Markovian and the non-Markovian
terms and shows the change in the leading term with time. So the kinetics demonstrates
the universal power law ∼t−7/2 in contradiction to the kinetic law of mass action. Figure 1
presents the relative deviation η of kinetics (5.57) from the Markovian kinetics [�m]t =
[�]0 exp(−(k f + kr )[B]t)

η = [�]t − [�m]t

[�]t
= P(t)

exp(−[B](k f + kr )t) + P(t)
(5.63)

for the parameters given in the figure caption.

6. Interference of transient channels

6.1. Transient channels

Note that ‘channels’ considered in the previous sections do not completely correspond to
the concepts of channels in non-stationary quantum scattering theory [4] and the theory of
multistage reactions (IET) developed in [72]. In these theories a channel means a set of
chemical compound fragments. That is why the reaction A + B � C + B , for example,
involves the channel AB of initial reactants and the channel C B of forward reaction products
(and vice versa). The notions introduced in this contribution and in [30, 64] correspond to
transient channels, and it is these channels that the simple kinetic schemes (4.22) and (5.28)
refer to. Strictly speaking, any of these definitions are the concepts of the Markovian theory.
So, for instance, expressions (5.29) derived by schemes (5.28) do not necessarily correspond to
DAB = DCB in reaction pairs.

Traditionally notions of transient channels are extended to the non-Markovian theory by
taking account of the time dependence of reaction rate constants [11, 12, 23, 26]. As is shown
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in section 3, for the irreversible reaction A + B → C + B , such an approach agrees with the
many-particle derivation of binary non-Markovian kinetic equations. This reaction has only
one (forward) transient channel of ‘scattering’.

Examination of the reversible reaction A + B � C (under conditions (4.20) given in
section 4) shows that the time-dependent reaction rate constant describes just the forward
reaction (transient channel of ‘scattering’). As for the reverse transient channel of reactant
C ‘decay’, here integral convolution of the memory function with the reactant C kinetics is
observed. In the reversible reaction A + B � C + B , the equations are of rate equation
character for both transient channels of ‘scattering’. It has been shown that both situations
correspond to independence of the reaction pair dynamics and collective dynamics. So it can
be concluded that transient channels of ‘scattering’ in binary non-Markovian kinetic equations
in a regular form are always characterized by time-dependent reaction rate constants, while
the ‘decay’ transient channel is characterized by integral convolution. It is the interference of
transient channels appearing in the non-Markovian theory as an extra non-Markovian source
which brings such situations into agreement (see below). Physically the above interference
means that on binary encounter of reactants a two-particle space correlation arises described
by a two-particle correlation pattern. Though this correlation decays effectively at the average
encounter time τe, it lives for an infinitely long time, and can only be terminated by the third
particle colliding with one of the correlated reactants. Taking account of this fact is the essence
of the IET modification in the development of MET of the irreversible reaction A+B → C+B .
In the case of the reversible reaction the third particle both breaks the binary encounter once
and for all, and causes the interference of the forward and reverse transient channels.

6.2. Transformation of transient channels

The different form of the manifestation of ‘decay’ and ‘scattering’ transient channels in non-
Markovian theory leads to the ambiguous extraction of the interference source in binary non-
Markovian kinetic equations in a regular form. To see this, consider the specific case of the
reaction A + B � C + B . According to channel kinetic schemes (5.28) and the corresponding
expressions (5.29) for Markovian rate constants, at DCB → ∞ they reduce to expressions

k f = k0
f kDAB

k0
f + kDAB

; kr = k0
r kDAB

k0
f + kDAB

(6.1)

formally coinciding with equations (4.23) for the reaction A + B � C . This means that at
DCB → ∞ the reaction A + B � C + B may be treated as the reaction A + B � C (in excess
of reactant B) with the reverse reaction (‘decay’) rate equal to kr [B]. It is easily seen that this
correspondence also takes place in non-Markovian IET at infinitely rapid relative mobility in
the pair C + B . Such a mobility corresponds to the equality of the free propagator ĝ0

CB to zero
in the expression for the T -operator (5.37), since in the case of infinite mobility the reactants
instantaneously leave the reaction zone. Then equation (5.37) goes into equations (3.22)
and (4.7). Preservation of the above correspondence in MET that uses just IET kernels
and characteristics obtained on their basis allows one to establish the form of MET memory
functions of the reaction A + B � C by passing to the limit DCB → ∞ in MET kernels of the
reaction A + B � C + B ,


b
f (t) ≡ k f

kr

b

r (t) = 
e
f (t) + k2

f (1 − exp(−[B]k f t))(4π DAB t)−3/2. (6.2)

The time shift rule (5.24) is used to change from integro-differential binary equations of MET
with kernels (6.2) to binary non-Markovian kinetic equations in a regular form. For deviations

26



J. Phys.: Condens. Matter 19 (2007) 065136 A B Doktorov and A A Kipriyanov

from equilibrium concentrations [�]t they give the kinetic equation

∂t [�]t − δ(t)[�]0 = −K f (t)[B][�]t − [B]
∫ t

−0

b

r (t − τ )[�]τ dτ + J ′(t)[�]0. (6.3)

It corresponds to equation (4.29) of the reaction A+ B � C in excess of B reactants and under
appropriate redefinition of the ‘decay’ rate but in the general case contains the source

J ′ = [B]k2
f

(4π D̄AB)3/2

∫ t

−0

dτ

τ 3/2
(HAA(τ ) − exp(−[B]k f τ )) exp(−[B](k f + kr )(t − τ )), (6.4)

where the matrix element of the propagator of equation (5.17)

HAA(τ ) = (exp(−[B]kτ))AA = kr

k f + kr
+ k f

k f + kr
exp(−[B](k f + kr )τ ). (6.5)

Retention of this source as compared to equation (4.29) (in excess of B reactants) is due to the
fact that equation (4.29) is obtained under the additional condition (4.18) according to which
the reaction rate by the reverse transient channel (‘decay’) considerably exceeds the rate of
forward reaction of association. However, using the limit

lim
α→∞(θ(t)α exp(−αt)) = δ(t) (6.6)

it is readily seen that J ′ = 0 at kr → ∞. It is interesting to note that in the reverse limiting
case k f 	 kr the contribution of channel interference into the deviation from the kinetics
corresponding to the kinetic law of mass action is also negligibly small. Note that at kr 	 k f ,
equation (5.51) gave condition (5.52) corresponding to condition (4.19) of the reaction regime
necessary for conversion from MET equations to their regular form. Thus really the initial
interference source can go to zero on redefinition of transient channels.

7. Summary

The consistent many-particle derivation of binary non-Markovian kinetic equations is a
sequence of steps. First we obtain integro-differential kinetic equations of integral encounter
theory (IET), the kernels of which (memory functions) describe the dynamics of the reacting
pairs. IET serves as a basis for the calculation of Markovian constants of the kinetic law
of mass action further employed to develop an effective pairs approximation (EPA) involving,
along with reaction pair dynamics, collective dynamics. The necessity of developing the EPA is
due to the existence of long-range space–time correlation in the reacting pair which can only be
terminated by the third reactant. In dilute solutions these dynamics have different characteristic
space–time scales; this leads to their separation in the binary approximation. As a result, we
have binary non-Markovian integro-differential kinetic equations of the modified encounter
theory (MET). Their kernels (memory functions) are defined by IET memory functions and
macro-observables (Markovian rate constants and macro-diffusion coefficients) which are also
the characteristics of IET kernels. In most cases just these binary equations are reduced to their
final regular form of binary non-Markovian equations of chemical kinetics. In these equations
independence of dynamics manifests itself in the fact that the kinetic coefficients are defined
by IET kernels. Th time-dependent reaction rate constant (integral of IET kernel) corresponds
to independent transient channels of ‘scattering’, while the independent transient channel of
‘decay’ is still the integral convolution with the IET kernel. The dependence of the dynamics
corresponds to transient channel interference; this gives rise to the inhomogeneous term (non-
Markovian source) in the above-mentioned kinetic equations.

Since taking account of collective dynamics is essential only at macro-times, binary
non-Markovian kinetic equations give new unusual universal (model-independent) kinetics
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of equilibrium concentration attainment that can differ considerably from the kinetics
corresponding to the kinetic law of mass action of formal chemical kinetics.
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Appendix

Quantity �m(t) in equations (5.46) and (5.47) is

�m(t) = exp(−(k− f + k−r )t)

(4π t)3/2(k f + kr )

(
k f

D̄3/2
AB

+ kr

D̄3/2
CB

)
−

∫
k2 dk

2π2
ϕ(k, t),

where

k− f = [B]k f ; k−r = [B]kr

ϕ(k, t) = kr

2(k f + kr )�

[
e−μ1t (2k−r − z − �)2

z + �
+ e−μ2t (2k− f − z + �)2

� − z

]
.

Here we introduced the parameters

μ1 = 2−1[k2(D̄AB + D̄CB ) + k− f + k−r − �];
μ2 = 2−1[k2(D̄AB + D̄CB ) + k− f + k−r + �];
�2 = z2 + 4k− f k−r ; z = k2(D̄AB − D̄CB ) + k− f − k−r .

Quantity �(t) in equations (5.46) and (5.47) is

�(t) = 1

(4π t)3/2(k f + kr )

(
k f

D̄3/2
AB

+ kr

D̄3/2
CB

)
−

∫
k2 dk

2π2
ϕ(k, t).
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